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Hierarchical Clustering of Hyperspectral Images
Using Rank-Two Nonnegative Matrix Factorization

Nicolas Gillis, Da Kuang, and Haesun Park

Abstract—In this paper, we design a fast hierarchical clustering
algorithm for high-resolution hyperspectral images (HSI). At the
core of the algorithm, a new rank-two nonnegative matrix fac-
torization (NMF) algorithm is used to split the clusters, which is
motivated by convex geometry concepts. The method starts with
a single cluster containing all pixels and, at each step, performs
the following: 1) selects a cluster in such a way that the error
at the next step is minimized and 2) splits the selected cluster
into two disjoint clusters using rank-two NMF in such a way that
the clusters are well balanced and stable. The proposed method
can also be used as an endmember extraction algorithm in the
presence of pure pixels. The effectiveness of this approach is
illustrated on several synthetic and real-world HSIs and is shown
to outperform standard clustering techniques such as k-means,
spherical k-means, and standard NMF.

Index Terms—Blind unmixing, endmember extraction algo-
rithm, hierarchical clustering, high-resolution hyperspectral im-
ages (HSIs), nonnegative matrix factorization (NMF).

I. INTRODUCTION

A HYPERSPECTRAL image (HSI) is a set of images taken
at many different wavelengths (usually between 100 and

200), not just the usual three visible bands of light (red at
650 nm, green at 550 nm, and blue at 450 nm). An impor-
tant problem in hyperspectral imaging is blind hyperspectral
unmixing (blind HU): Given an HSI, the goal is to recover the
constitutive materials present in the image (the endmembers)
and the corresponding abundance maps (i.e., determine which
pixel contains which endmember and in which quantity). Blind
HU has many applications such as quality control in the food
industry, analysis of the composition of chemical compositions
and reactions, monitoring the development and health of crops,
monitoring polluting sources, military surveillance, and medi-
cal imaging (see, for example, [1] and the references therein).

Let us associate a matrix M ∈ R
m×n
+ to a given HSI with

m spectral bands and n pixels as follows: The (i, j)th entry
M(i, j) of matrix M is the reflectance of the jth pixel at the ith
wavelength (i.e., the fraction of incident light that is reflected by
the ith pixel at the jth wavelength). Hence, each column of M
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is equal to the spectral signature of a pixel, while each row is
a vectorized image at a given wavelength. The linear mixing
model (LMM) assumes that the spectral signature of each
pixel is a linear combination of the spectral signatures of the
endmembers, where the weights in the linear combination are
the abundances of each endmember in that pixel. For example,
if a pixel contains 40% of aluminum and 60% of copper, then
its spectral signature will be 0.4 times the spectral signature of
aluminum plus 0.6 times the spectral signature of copper. This
is a rather natural model: We assume that 40% of the light is
reflected by aluminum while 60% is by copper, while nonlinear
effects are neglected (such as the light interacting with multiple
materials before reflecting off or atmospheric distortions).

Assuming that the image contains r endmembers and denot-
ing W (:, k) ∈ R

m(1 ≤ k ≤ r) as the spectral signatures of the
endmembers, the LMM can be written as

M(:, j) =
r∑

k=1

W (:, k)H(k, j) 1 ≤ j ≤ n

where H(k, j) is the abundance of the kth endmember in the
jth pixel; hence,

∑r
k=1 H(k, j) = 1 for all j, which is referred

to as the abundance sum-to-one constraint. Under the LMM
and given an HSI M , blind HU amounts to recovering the
spectral signatures of the endmembers (matrix W ) along with
the abundances (matrix H). Since all matrices involved (M ,
W , and H) are nonnegative, blind HU under the LMM is
equivalent to nonnegative matrix factorization (NMF): Given
a nonnegative matrix M ∈ R

m×n
+ and a factorization rank r,

find two nonnegative matrices W ∈ R
m×r
+ and H ∈ R

r×n
+ such

that M ≈ WH . Unfortunately, NMF is NP-hard [2] and highly
ill-posed [3]. Therefore, in practice, it is crucial to use the
structure of the problem at hand to develop efficient numerical
schemes for blind HU. This is usually achieved using additional
constraints or regularization terms in the objective function,
e.g., the sum-to-one constraint on the columns of H (see
previous discussion), sparsity of the abundance matrix H (most
pixels contain only a few endmembers), piecewise smoothness
of the spectral signatures W (:, k) [4], and spatial information
[5] (i.e., neighboring pixels are more likely to contain the
same materials). Although these priors make the corresponding
NMF problems more well-posed, the underlying optimization
problems to be solved are still computationally difficult (and
only local minimum are usually obtained). We refer the reader
to the survey [1] for more details about blind HU.

In this paper, we make an additional assumption, i.e., that
most pixels are dominated mostly by one endmember, and our
goal is to cluster the pixels accordingly. In fact, clustering the
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Fig. 1. Illustration of the splitting technique based on rank-two NMF.

pixels of an HSI only makes sense for relatively high-resolution
images. For such images, it is often assumed that, for each
endmember, there exists at least one pixel containing only that
endmember, i.e., for all 1 ≤ k ≤ r, there exists j such that
M(:, j) = W (:, k). This is the so-called pure-pixel assumption.
The pure-pixel assumption is equivalent to the separability
assumption (see [6] and the references therein) which makes the
corresponding NMF problem tractable, even in the presence of
noise [7]. Hence, blind HU can be solved efficiently under the
pure-pixel assumption. Mathematically, a matrix M ∈ R

m×n is
r-separable if it can be written as

M = WH = W [Ir, H
′]Π

where W ∈ R
m×r, H ′ ≥ 0, and Π is a permutation matrix. If

M is an HSI, we have, as before, the following.

1) The number r is the number of endmembers present in
the HSI.

2) Each column of W is the spectral signature of an end-
member.

3) Each column of H is the abundance vector of a pixel.
More precisely, the entry H(i, j) is the abundance of the
ith endmember in the jth pixel.

Because the column of H sum to one, each column of M be-
longs to the convex hull of the columns of W , i.e., conv(M) ⊆
conv(W ). The pure-pixel assumption requires that conv(M) =
conv(W ), i.e., that the vertices of the convex hull of the
columns of M are the columns of W (see the top of Fig. 1 for an

illustration in the rank-three case). Hence, the separable NMF
problem (or, equivalently, blind HU under the LMM and the
pure-pixel assumption) reduces to identifying the vertices of the
convex hull of the columns of M . However, in noisy settings,
this problem becomes more difficult, and although some robust
algorithms have been proposed recently (see, for example, [8]
and the references therein), they are typically rather sensitive to
noise and outliers.

Motivated by the fact that, in high-resolution HSIs, most
pixels are dominated mostly by one endmember, we develop in
this paper a practical and theoretically well-founded hierarchi-
cal clustering technique. Hierarchical clustering based on NMF
has been shown to be faster than flat clustering and can often
achieve similar or even better clustering quality [9]. At the core
of the algorithm is the use of rank-two NMF that splits a cluster
into two disjoint clusters. We study the unique property of rank-
two NMF as opposed to a higher rank NMF. We also propose
an efficient algorithm for rank-two NMF so that the overall
problem of hierarchical clustering of HSIs can be efficiently
solved.

This paper is organized as follows. In Section II, we describe
our hierarchical clustering approach (see Algorithm 1 referred
to as H2NMF). At each step, a cluster is selected (Section II-A)
and then split into two disjoint clusters (Section II-B). The
splitting procedure has a rank-two NMF algorithm at its core
which is described in Section II-C, where we also provide some
sufficient conditions under which the proposed algorithm re-
covers an optimal solution. In Section II-D, we analyze the ge-
ometric properties of the hierarchical clustering. In Section III,
we show that it outperforms k-means, spherical k-means (either
if they are used in a hierarchical manner or directly on the full
image), and standard NMF on synthetic and real-world HSIs,
being more robust to noise, outliers, and absence of pure pixels.
We also show that it can be used as an endmember extraction
algorithm and outperforms vertex component analysis (VCA)
[10] and the successive projection algorithm (SPA) [11], two
standard and widely used techniques.

II. HIERARCHICAL CLUSTERING FOR

HSIs USING RANK-TWO NMF

As mentioned in the introduction, for high-resolution HSI,
one can assume that most pixels contain mostly one ma-
terial. Hence, given a high-resolution HSI with r endmem-
bers, it makes sense to cluster the pixels into r clusters,
each cluster corresponding to one endmember. Mathematically,
given the HSI M ∈ R

m×n
+ , we want to find r disjoint clus-

ters Kk ⊂ {1, 2, . . . n} for 1 ≤ k ≤ r so that ∪k=1,2,...,rKk =
{1, 2, . . . n} and so that all pixels in Kk are dominated by the
same endmember.

In this paper, we assume that the number of endmembers
is known in advance. In fact, the problem of determining the
number of endmembers (also known as model order selection)
is nontrivial and out of the scope of this paper (see, for example,
[12]). However, a crucial advantage of our approach is that
it decomposes the data hierarchically and hence provides the
user with a hierarchy of materials (see, for example, Figs. 6
and 9). In particular, the algorithm does not need to be rerun
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from scratch if the number of clusters required by the user is
modified.

In this section, we propose an algorithm to cluster the pixels
of an HSI in a hierarchical manner. More precisely, at each
step, given the current set of clusters {Kk}pk=1, we select one of
the clusters and split it into two disjoint clusters. Hierarchical
clustering is a standard technique in data mining that organizes
a data set into a tree structure of items. It is widely used
in text analysis for efficient browsing and retrieval [9], [13],
[14], as well as exploratory genomic study for grouping genes
participating in the same pathway [15]. Another example is
to segment an image into a hierarchy of regions according to
different cues in computer vision such as contours and textures
[16]. In contrast to image segmentation problems, our focus is
to obtain a hierarchy of materials from HSIs taken at hundreds
of wavelengths instead of the three visible wavelengths.

At each step of a hierarchical clustering technique, one has
to address the following two questions.

1) Which cluster should be split next?
2) How do we split the selected cluster?

These two building blocks for our hierarchical clustering tech-
nique for HSIs are described in the following sections.

A. Selecting the Leaf Node to Split

Eventually, we want to cluster the pixels into r disjoint
clusters {Kk}rk=1, each corresponding to a different endmem-
ber. Therefore, each submatrix M(:,Kk) should be close to
a rank-one matrix since, for all j ∈ Kk, we should have
M(:, j) = W (:, k), possibly up to a scaling factor (e.g., due to
different illumination conditions in the image), where W (:, k)
is the spectral signature of the endmember corresponding to
the cluster Kk. In particular, in ideal conditions, i.e., each pixel
contains exactly one material and no noise is present, M(:,Kk)
is a rank-one matrix. Based on this observation, we define the
error Ek corresponding to each cluster as follows:

Ek = min
X,rank(X)=1

‖M(:,Kk)−X‖2F

= ‖M(:,Kk)‖2F − σ2
1 (M(:,Kk)) .

We also define the total error E =
∑r

k=1 Ek. If we decide to
split the kth cluster Kk into K1

k and K2
k, the error corresponding

to the columns in Kk is given by

2∑
i=1

(∥∥M (
:,Ki

k

)∥∥2
F
− σ2

1

(
M

(
:,Ki

k

)))
= ‖M(:,Kk)‖2F −

(
σ2
1

(
M

(
:,K1

k

))
+ σ2

1

(
M

(
:,K2

k

)))
.

(Note that the error corresponding to the other clusters is
unchanged.) Hence, if the kth cluster is split, the total error E
will be reduced by

σ2
1

(
M

(
:,K1

k

))
+ σ2

1

(
M

(
:,K2

k

)
− σ2

1 (M(:,Kk)) .

Therefore, we propose to split the cluster k for which the
aforementioned value is maximized: This leads to the largest
possible decrease in the total error E at each step.

B. Splitting a Leaf Node

For the splitting procedure, we propose to use rank-two
NMF. Given a nonnegative matrix M ∈ R

m×n
+ , rank-two NMF

looks for two nonnegative matrices W ∈ R
m×2
+ and H ∈ R

2×n
+

such that WH ≈ M . The motivation for this choice is twofold.

1) NMF corresponds to the LMM for HSIs (see the
introduction).

2) Rank-two NMF can be solved efficiently, avoiding the
use of an iterative procedure as in standard NMF algo-
rithms. In Section II-C, we propose a new rank-two NMF
algorithm using convex geometry concepts from HSI (see
Algorithm 4).

Suppose for now that we are given a rank-two NMF (W,H)
of M . Such a factorization is a 2-D representation of the data;
more precisely, it projects the columns of M onto a 2-D pointed
cone generated by the columns of W . Hence, a naive strategy
to cluster the columns of M is to choose the clusters as follows:

C1 = {i|H(1, i) ≥ H(2, i)} and C2={i|H(1, i) < H(2, i)} .

Defining the vector x ∈ [0, 1]n as

x(i) =
H(1, i)

H(1, i) +H(2, i)
for 1 ≤ i ≤ n

the aforementioned clustering assignment is equivalent to
taking

C1 = {i|xi ≥ δ} and C2 = {i|xi < δ} (1)

with δ = 0.5. However, the choice of δ = 0.5 is by no means
optimal and often leads to a rather poor separation. In particular,
if an endmember is located exactly between the two extracted
endmembers, the corresponding cluster is likely to be divided
into two, which is not desirable (see Fig. 1). In this section, we
present a simple way to tune the threshold δ ∈ [0, 1] in order to
obtain, in general, significantly better clusters C1 and C2.

Let us define the empirical cumulative distribution of x as
follows:

F̂X(δ) =
1

n
|{i | xi ≤ δ}| ∈ [0, 1], for δ ∈ [0, 1].

By construction, F̂X(0) = 0, and F̂X(1) = 1. Let us also define

ĜX(δ) =
1

n(δ̄ − δ)

∣∣{i | δ ≤ xi ≤ δ̄}
∣∣ ∈ [0, 1]

where δ = max(0, δ − δ̂) and δ̄ = min(1, δ + δ̂), δ ∈ [0, 1],
and δ̂ ∈ (0, 0.5) is a small parameter. The function ĜX(δ)
accounts for the number of points in a small interval around δ.
Note that, assuming uniform distribution in the interval [0, 1],
the expected value of ĜX(δ) is equal to one. In fact, since the
entries of x are in the interval [0, 1], the expected number of
data points in an interval of length L is nL. In this paper, we
use δ̂ = 0.05.
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Given δ, we obtain two clusters C1 and C2 [see (1)]. We
propose to choose a value of δ such that the following goals
are achieved.

1) The clusters are balanced, i.e., the two clusters contain, if
possible, roughly the same number of elements. Mathe-
matically, we would like to have F̂X(δ) ≈ 0.5.

2) The clustering is stable, i.e., if the value of δ is slightly
modified, then only a few points are transferred from one
cluster to the other. Mathematically, we would like to
have ĜX(δ) ≈ 0.

We propose to balance these two goals by choosing δ that
minimizes the following criterion:

g(δ) = −log
(
F̂X(δ)

(
1− F̂X(δ)

))
︸ ︷︷ ︸

balanced clusters

+exp
(
ĜX(δ)

)
︸ ︷︷ ︸
stable clusters

. (2)

The first term avoids skewed classes, while the second pro-
motes a stable clustering. Note that the two terms are somewhat
well balanced since, for F̂X(δ) ∈ [0.1, 0.9]

−log
(
F̂X(δ)

(
1− F̂X(δ)

))
≤ 2.5

and the expected value of ĜX(δ) is one (see previous discus-
sion). Note that, depending on the application at hand, the two
terms of g(δ) can be balanced in different ways; for example, if
one wants to allow very small clusters to be extracted, then the
first term of g(δ) should be given less importance.

Remark 1 (Sensitivity to δ): The splitting procedure is
clearly very sensitive to the choice of δ. For example, as de-
scribed previously, choosing δ = 0.5 can give very poor results.
However, if the function g(δ) is chosen in a sensible way, then
the corresponding splitting procedure generates, in general,
good clusters. For example, we had first run all of the exper-
iments from Section III selecting δ minimizing the function

g(δ) = 4(F̂X(δ)− 0.5)2 +
(
ĜX(δ)

)2

and it gave very similar results (sometimes slightly better and
sometimes slightly worse). The advantage of the function (2) is
that it makes sure no empty cluster is generated (since it goes
to infinity when F̂X(δ) goes to 0 or 1).

Remark 2 (Sensitivity to δ̂): The parameter δ̂ is the window
size where the stability of a given clustering is evaluated. For
δ corresponding to a stable cluster (i.e., only a few pixels are
transferred from one cluster to the other if δ is slightly modi-
fied), ĜX(δ) will remain small when δ̂ is slightly modified. For
the considered data sets, most clusterings are stable (because
the data are, in fact, constituted of several clusters of points);
hence, in that case, the splitting procedure does not seem to
be very sensitive to δ̂ as long as it is in a reasonable range. In
fact, we have also run the numerical experiments for δ̂ = 0.01
and δ̂ = 0.1, and it gave very similar results (in particular,
for the Urban, San Diego, Terrain, and Cuprite HSIs from
Section III-D, it is hardly possible to distinguish the solutions
with the naked eye).

Fig. 1 illustrates the geometric insight behind the split-
ting procedure in the case r = 3 (see also Section II-D),

while Algorithm 1 gives a pseudocode of the full hierarchical
procedure.

Algorithm 1 Hierarchical Clustering of a HSI based on
Rank-Two NMF (H2NMF)

Input: A HSI M ∈ R
m×n
+ and the number r of clusters.

Output: Disjoint clustersKi(1≤ i≤r)with∪iKi={1, . . . , n}.
1: % Initialization
2: K1 = {1, 2, . . . , n} and Ki = ∅ for 2 ≤ i ≤ r.
3: (K1

1,K2
1) = split(M,K1). % See Algorithm 2

4: K1
i = K2

i = ∅ for 2 ≤ i ≤ r.
5: for k = 2: r do
6: % Select the cluster to split; see Section II-A
7: Let j = argmaxi σ

2
1(M(:,K1

i )) + σ2
1(M(:,K2

i ) −
σ2
1(M(:,Ki)).

8: % Update the clustering
9: Kj = K1

j and Kk = K2
j .

10: % Split the new clusters (Algorithm 2)
11: (K1

� ,K2
� ) = split(M,K�) for � = j, k.

12: end for

Algorithm 2 Splitting of an HSI using Rank-Two NMF

Input: A HSI M ∈ R
m×n
+ and a subset K ⊆ {1, 2, . . . , n}.

Output: Two disjoint clusters K1 and K2 with K1∪K2=K.
1: (W,H) = rank-twoNMF(M(:,K)) (Algorithm 4).
2: Let x(i) = H(1, i)/(H(1, i) +H(2, i)) for 1 ≤ i ≤ |K|.
3: Compute δ∗ as the minimum of g(δ) defined in (2).
4: K1 = {K(i) | x(i) ≥ δ∗} and K2 = {K(i) | x(i) < δ∗}.

C. Rank-Two NMF for HSIs

In this section, we propose a simple and fast algorithm for
the rank-two NMF problem tailored for HSIs (Section II-C1).
Then, we discuss some sufficient conditions for the algorithm
to be optimal (Section II-C2).

1) Description of the Algorithm: When a nonnegative ma-
trix M ∈ R

m×n
+ has rank two, Thomas has shown [17] that find-

ing two nonnegative matrices (W,H) ∈ R
m×2
+ × R

2×n
+ such

that M = WH is always possible (see also [18]). This can be
explained geometrically as follows: Viewing the columns of M
as points in R

m
+ , the fact that M has rank two implies that the set

of its columns belongs to a 2-D subspace. Furthermore, because
these columns are nonnegative, they belong to a 2-D pointed
cone. Since such a cone is always spanned by two extreme
vectors, this implies that all columns of M can be represented
exactly as nonnegative linear combinations of two nonnegative
vectors, and therefore, the exact NMF is always possible1 for

1The reason why this property no longer holds for higher values of the rank
r of matrix M is that an r-dimensional cone is not necessarily spanned by a set
of r vectors when r > 2.
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r = 2. Moreover, these two extreme columns can easily be
identified. For example, if the columns of M are normalized so
that their entries sum to one, then the columns of M belong to a
line segment, and it is easy to detect the two vertices. This can
be done, for example, using any endmember extraction algo-
rithm under the LMM and the pure-pixel assumption since they
aim to detect the vertices (corresponding to the endmembers)
of a convex hull of a set of points (see the introduction). In
this paper, we use the SPA [11], which is a highly efficient
and widely used algorithm (see Algorithm 3). Moreover, it has
been shown to be robust to any small perturbation of the input
matrix [6]. Note that SPA is closely related to the automatic
target generation process algorithm [19] and the successive
volume maximization algorithm [20] (see [21] for a survey
about these methods). Note that it would be possible to use
more sophisticated endmember extraction algorithms for this
step, e.g., RAVMAX [22] or WAVMAX [20] which are more
robust variants of SPA (although computationally much more
expensive).

Algorithm 3 Successive Projection Algorithm (SPA) [6], [11]

Input: Separable matrix M = W [Ir, H
′]Π where H ′ ≥ 0,

‖H(:, j)‖1≤1 ∀j, W is full rank and Π is a permutation,
and r.

Output: Set of indices K such that M(:,K) = W (up to
permutation).

1: Let R = M , K = {}.
2: for i = 1: r do
3: k = argmaxj ‖R:j‖2.
4: R ← (I − (R:kR

T
:k/‖R:k‖22))R.

5: K = K ∪ {k}.
6: end for

We can now describe our proposed rank-two NMF algorithm
for HSI: It first projects the columns of M into a 2-D linear
space using the SVD (note that, if the rank of the input matrix is
two, this projection step is exact), then identifies two important
columns with SPA and projects them onto the nonnegative
orthant, and finally computes the optimal weights solving a
nonnegative least squares problem (NNLS; see Algorithm 4).

Algorithm 4 Rank-Two NMF for HSIs

Input: A nonnegative matrix M ∈ R
m×n
+ .

Output: A rank-two NMF (W,H) ∈ R
m×2
+ × R

2×n
+ .

1: % Compute an optimal rank-two approximation of M
2: [U, S, V T ] = svds(M, 2); % MATLAB function svds

3: Let X = SV (= UTUSV = UTM);
4: % Extract two indices using SPA
5: K = SPA(X, 2); % See Algorithm 3
6: W = max(0, USV (:,K));
7: H = argminY ≥0 ‖M −WY ‖2F ; % See Algorithm 5

Algorithm 5 Nonnegative Least Squares with Two Vari-
ables [9]

Input: A matrix A ∈ R
m×2 and a vector b ∈ R

m.
Output: A solution x ∈ R

2
+ to minx≥0 ‖Ax− b‖2.

1: % Compute the solution of the least squares problem
2: x = argminx ‖Ax− b‖2.
3: if x ≥ 0, then return.
4:% Compute the solutions for x(1) = 0 and x(2) = 0 (the

two possible active sets)
5: Let y = (0,max(0, (A(:, 1)T b/‖A(:, 1)‖22))),

and z = (max(0, (A(:, 2)T b/‖A(:, 2)‖22)), 0).
6: if ‖Ay − b‖2 < ‖Az − b‖2 then
7: x = y, else x = z.
8: end if

Let us analyze the computational cost of Algorithm 4. The
computation of the rank-two SVD of M is O(mn) operations
[23]. (Note that this operation scales well for sparse matrices as
there exist SVD methods that can handle large sparse matrices,
e.g., the svds function of MATLAB.) For HSIs, m is much
smaller than n (usually m ∼ 200, while n ∼ 106); hence, it
is faster to compute the SVD of M using the SVD of MMT

which requires 2mn+O(m2) operations (see, for example,
[10]). Note, however, that this is numerically less stable as
the condition number of the corresponding problem is squared.
Extracting the two indices in step 5 with SPA requires O(n)
operations [6], while computing the optimal H requires solving
n linear systems in two variables for a total computational cost
of O(mn) operations [9]. In fact, the NNLS minX∈R2×n

+
‖M −

WX‖2F where W ∈ R
m×2
+ can be decoupled into n indepen-

dent NNLS in two variables since

‖M −WX‖2F =
n∑

i=1

‖M(:, i)−WX(:, i)‖22 .

Algorithm 5 implements the algorithm in [9] to solve these
subproblems.

Finally, Algorithm 4 requires O(mn) operations, which
implies that the global hierarchical clustering procedure
(Algorithm 1) requires at most O(mnr) operations. Note that
this is rather efficient and developing a significantly faster
method would be difficult. In fact, it already requires O(mnr)
operations to compute the product of W ∈ R

m×r and H ∈
R

r×n or to assign optimally n data points in dimension m to r
cluster centroids using the Euclidean distance. Note, however,
that in an ideal case, if the largest cluster is always divided into
two clusters containing the same number of pixels (hence, we
would have a perfectly balanced tree), the number of operations
reduces to O(mn log(r)). Hence, in practice, if the clusters are
well balanced, the computational cost is rather in O(mn log(r))
operations.

2) Theoretical Motivations: As mentioned previously, rank-
two NMF can be solved exactly for rank-two input matrices. Let
us show that Algorithm 4 does.

Theorem 1: If M is a rank-two nonnegative matrix whose
entries of each column sum to one, then Algorithm 4 computes
an optimal rank-two NMF of M .
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Proof: Since M has rank two and is nonnegative, there
exists an exact rank-two NMF (F,G) of M = FG =

∑2
k=1

F (:, k)G(k, :) [17]. Moreover, since the entries of each column
of M sum to one, we can assume without loss of generality
that the entries of each column of F and G sum to one as well.
In fact, we can normalize the two columns of F so that their
entries sum to one while scaling the rows of G accordingly

M =

2∑
k=1

F (:, k)

‖F (:, k)‖1︸ ︷︷ ︸
F ′(:,k)

‖F (:, k)‖1 G(k, :)︸ ︷︷ ︸
G′(k,:)

.

Since the entries of each column of M and F ′ sum to one and
M = F ′G′, the entries of each column of G′ have to sum to one
as well. Hence, the columns of M belong to the line segment
[F ′(:, 1), F ′(:, 2)].

Let (U, S, V T ) be the rank-two SVD ofM computed at step 2
of Algorithm 4; we have SV = UTM = (UTF ′)G′. Hence,
the columns of SV belong to the line segment [UTF ′(:, 1),
UTF ′(:, 2)] so that SPA applied on SV will identify two indices
corresponding to two columns of M being the vertices of the
line segment defined by its columns [6, Th. 1]. Therefore, any
column of M can be reconstructed with a convex combination
of these two extracted columns, and Algorithm 4 will generate
an exact rank-two NMF of M . �

Corollary 1: Let M be a noiseless HSI with two endmem-
bers satisfying the LMM and the sum-to-one constraint; then,
Algorithm 4 computes an optimal rank-two NMF of M .

Proof: By definition, M = WH , where the columns of
W are equal to the spectral signatures of the two endmembers
and the columns of H are nonnegative and sum to one (see the
introduction). The rest of the proof follows the second part of
the proof of Theorem 1 (note that the pure-pixel assumption is
not necessary). �

In practice, the sum-to-one constraint assumption is some-
times relaxed to the following: The sum of the entries of each
column of H is at most one. This has several advantages such
as allowing the image to contain “background” pixels with zero
spectral signatures or taking into account different intensities
of light among the pixels in the image (see, for example, [1]).
In that case, Algorithm 4 works under the additional pure-pixel
assumption.

Corollary 2: Let M be a noiseless HSI with different il-
lumination conditions, with two endmembers, and satisfying
the LMM and the pure-pixel assumption; then, Algorithm 4
computes an optimal rank-two NMF of M .

Proof: By assumption,M=W [I2, H
′]Π, whereH ′ is non-

negative and the entries of each column sum to at most one, and
Π is a permutation. This implies that the columns ofM are now in
the triangle whose vertices are W (:, 1), W (:, 2), and the origin.
Following the proof of Theorem 1, after the SVD, the columns of
SV are in the triangle whose vertices areUTW (:,1),UTW (:,2),
and the origin. Hence, SPA will identify correctly the indices
corresponding to W (:, 1) and W (:, 2) [6, Th. 1] so that any col-
umn of M can be reconstructed using these two columns. �

At the first steps of the hierarchical procedure, rank-two
NMF maps the data points into a 2-D subspace. However, the
input matrix does not have rank two if it contains more than
two endmembers. In the following, we derive some simple
sufficient conditions to support the fact that the rank-two SVD

of a nonnegative matrix is nonnegative (or at least has most
of its entries nonnegative). Let us refer to an optimal rank-two
approximation of a matrix M as an optimal solution of

min
A∈Rm×n

‖M −A‖2F such that rank(A) ≤ 2.

We will also refer to rank-two NMF as the following optimiza-
tion problem:

min
U∈Rm×2,V ∈R2×n

‖M − UV ‖2F such that U ≥ 0 and V ≥ 0.

Lemma 1: LetM ∈R
m×n
+ ,A∈R

m×n be an optimal rank-two
approximation of M and R=M−A be the residual error. If

L = min
i,j

(Mij) ≥ max
i,j

Rij

then every entry of A is nonnegative.
Proof: If Akl < 0 for some (k, l), then L ≤ Mkl<Mkl−

Akl = Rkl ≤ maxij Rij , a contradiction. �
Corollary 3: Let M ∈ R

m×n
+ satisfy

L = min
i,j

(Mij) ≥ σ3(M).

Then, any optimal rank-two approximation ofM is nonnegative.
Proof: This follows from Lemma 1 since, for any optimal

rank-two approximation A of M with R = M −A, we have
maxij Rij ≤ ‖R‖2 = σ3(M). �

Corollary 3 shows that a positive matrix close to having rank
two and/or only containing relatively large entries is likely to
have an optimal rank-two approximation which is nonnegative.
Note that HSIs usually have mostly positive entries, and in
fact, we have observed that the best rank-two approximation of
real-world HSIs typically contains mostly nonnegative entries
(e.g., for the Urban HSI, more than 99.5%; for the San Diego
HSI, more than 99.9%; for the Cuprite HSI, more than 99.98%;
and for the Terrain HSI, more than 99.8%; see Section III-D
for a description of these data sets). It would be interesting to
investigate further sufficient and necessary conditions for the
optimal rank-two approximations of a nonnegative matrix to be
nonnegative; this is a topic for further research. Note also that
Theorem 1 only holds for rank-two NMF and cannot be ex-
tended to more general cases with an arbitrary r. Consequently,
we designed Algorithm 4 specifically for rank-two NMF. How-
ever, Algorithm 4 is important in the context of hierarchical
clustering where rank-two NMF is the core computation. We
will show in Section III that our overall method achieves high
efficiency compared to other hyperspectral unmixing methods.
Moreover, if we flatten the obtained tree structure and look
at the clusters corresponding to the leaf nodes, we will see
that H2NMF achieves much better cluster quality compared
to the flat clustering methods including k-means and spherical
k-means. Thus, although the theory in this paper is developed
for rank-two NMF only, it has great significance in clustering
HSIs with more than two endmembers.

D. Geometric Interpretation of the Splitting Procedure

Given an HSI M ∈ R
m×n containing r endmembers and

given that the pure-pixel assumption holds, we have

M = WH = W [Ir, H
′]Π
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where W ∈ R
m×r, H ′ ≥ 0, and Π is a permutation matrix.

This implies that the convex hull conv(M) of the columns
of M coincides with the convex hull of the columns of W
and has r vertices (see the introduction). A well-known fact
in convex geometry is that the projection of any polytope P
into an affine subspace generates another polytope, e.g., P ′.
Moreover, each vertex of P ′ results from the projection of at
least one vertex of P (although it is unlikely, it may happen that
two vertices are projected onto the same vertex, given that the
projection is parallel to the segment joining these two vertices).
It is interesting to notice that this fact has been used previously
in hyperspectral imaging: For example, the widely used VCA
algorithm [10] uses three kinds of projections. First, it projects
the data into an r-dimensional space using the SVD (in order to
reduce the noise). Then, at each step, the following operations
are performed.

1) In order to identify a vertex (i.e., an endmember), VCA
projects conv(M) onto a 1-D subspace. More precisely, it
randomly generates a vector c ∈ R

m and then selects the
columns of M maximizing cTM(:, i).

2) It projects all columns of M onto the orthogonal com-
plement of the extracted vertex so that, if W is full rank
(i.e., if conv(M) has r vertices and has dimension r − 1),
the projection of conv(M) has r − 1 vertices and has
dimension r − 2 (this step is the same as step 4 of SPA;
see Algorithm 3).

In view of these observations, Algorithm 4 can be geometri-
cally interpreted as follows.

1) At the first step, the data points are projected into a 2-D
subspace so that the maximum variance is preserved.

2) At the second step, two vertices are extracted by SPA.
3) At the third step, the data points are projected onto the

2-D convex cone generated by these two vertices.

E. Related Work

It has to be noted that the use of rank-two NMF as a
subroutine to solve classification problems has already been
studied before. In [24], a hierarchical NMF algorithm was
proposed (namely, hierarchical NMF) based on rank-two NMF
and was used to identify tumor tissues in magnetic resonance
spectroscopy images of the brain. The rank-two NMF sub-
problems were solved via standard iterative NMF techniques.
In [25], a hierarchical approach was proposed for convex-
hull NMF, which could discover clusters not corresponding to
any vertex of the conv(M) but lying inside conv(M), and an
algorithm based on FastMap [26] was used. In [9], hierarchical
clustering based on rank-two NMF was used for document
classification. The rank-two subproblems were solved using
alternating nonnegative least squares [27], [28], i.e., by opti-
mizing alternatively W for H fixed and H for W fixed (the
subproblems being efficiently solved using Algorithm 5).

However, these methods do not take advantage of the nice
properties of rank-two NMF, and the novelty of our technique
is threefold:

1) the way the next cluster to be split is chosen based on a
greedy approach (so that the largest possible decrease in
the error is obtained at each step; see Section II-A);

2) the way the clusters are split based on a trade-off be-
tween having balanced clusters and stable clusters (see
Section II-B);

3) the use of a rank-two NMF technique tailored for HSIs
(using their convex geometry properties) to design a
splitting procedure (see Section II-C).

III. NUMERICAL EXPERIMENTS

In the first part, we compare different algorithms on synthetic
data sets: This allows us to highlight their differences and
also shows that our hierarchical clustering approach based on
rank-two NMF is rather robust to noise and outliers. In the
second part, we apply our technique to real-world hyperspectral
data sets. This, in turn, shows the power of our rank-two
NMF approach for clustering but also as a robust hyperspectral
unmixing algorithm for HSI. The MATLAB code is available
at https://sites.google.com/site/nicolasgillis/. All tests are per-
formed using MATLAB on a laptop Intel CORE i5-3210M
CPU @2.5 GHz 2.5 GHz 6 Go RAM.

A. Tested Algorithms

We will compare the following algorithms.

1) H2NMF: hierarchical clustering based on rank-two NMF
(see Algorithm 1 and Section II).

2) HKM: hierarchical clustering based on k-means. This is
exactly the same algorithm as H2NMF, except that the
clusters are split using k-means instead of the rank-two
NMF based technique described in Section II-B (we used
the kmeans function of MATLAB).

3) HSPKM: hierarchical clustering based on spherical k-
means [29]. This is exactly the same algorithm as
H2NMF, except that the clusters are split using spherical
k-means (we used a MATLAB code available online2).

4) NMF: we compute a rank-r NMF (U, V ) of the HSI
M using the accelerated HALS algorithm from [30].
Each pixel is assigned to the cluster corresponding to the
largest entry of the columns of V .

5) KM: k-means algorithm with k = r.
6) SPKM: spherical k-means algorithm with k = r.

Moreover, the cluster centroids of HKM and HSPKM are
initialized the same way as that for H2NMF, i.e., using
steps 2–5 of Algorithm 4. NMF, KM, and SPKM are initialized
in a similar way: the rank-r SVD of M is first computed (which
reduces the noise), and then, SPA is applied on the resulting
low-rank approximation of M (this is essentially equivalent
to steps 2–5 of Algorithm 4 but replacing 2 by r). Note that
we have tried using random initializations for HKM, HSPKM,
NMF, KM, and SPKM (which is the default in MATLAB), but
the corresponding clustering results were very poor (for exam-
ple, NMF, KM, and SPKM were, in general, not able to identify
the clusters perfectly in noiseless conditions). Recall that SPA
is optimal for HSIs satisfying the pure-pixel assumption [6];
hence, it is a reasonable initialization.

2http://www.mathworks.com/matlabcentral/fileexchange/28902-spherical-
k-means/content/spkmeans.m
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Fig. 2. Endmembers from the Cuprite HSI used for the synthetic data sets.

B. Synthetic Data Sets

In this section, we compare the six algorithms described in
the previous section on synthetic data sets, so that the ground
truth labels are known. Given the parameters ε ≥ 0, s ∈ {0, 1},
and b ∈ {0, 1}, the synthetic HSI M = [WH,Z] +N with
W ∈ R

m×r
+ , H ∈ R

r×(n−z)
+ , Z ∈ R

m×z
+ , and N ∈ R

m×n is
generated as follows.

1) We use six endmembers, i.e., r = 6.
2) The spectral signatures of the six endmembers, i.e., the

columns of W , are taken as the spectral signatures of
materials from the Cuprite HSI (see Section III-E3),
and we have W ∈ R

188×6
+ (see Fig. 2). Note that W is

rather poorly conditioned (κ(W ) = 91.5) as the spectral
signatures look very similar to one another.

3) The pixels are assigned to the six clusters Kk1 ≤ k ≤ r,
where each cluster contains a different number of pixels
with |Kk| = 500− (k − 1)50, 1 ≤ k ≤ r (for a total of
2250 pixels).

4) Once a pixel, e.g., the ith, has been assigned to a cluster,
e.g., the kth, the corresponding column of H is generated
as follows: H(:, i) = 0.9ek + 0.1x, where ek is the kth
column of the identity matrix, and x ∈ R

r
+ is drawn from

a Dirichlet distribution where all parameters are equal
to 0.1. Note that the Dirichlet distribution generates a
vector x whose entries sum to one (hence, the entries
of H(:, i) also do), while the weight of the entries of x
is concentrated only in a few components (hence, each
pixel usually contains only a few endmembers in large
proportions). In particular, each pixel contains at least
90% of a single endmember.

5) If s = 1, each column of H is multiplied by a constant
drawn uniformly at random between 0.8 and 1. This
allows us to take into account different illumination con-
ditions in the HSI. Otherwise, if s = 0, then H is not
modified.

6) If b = 1, then 10 outliers and 40 background pixels
with zero spectral signatures are added to M , i.e., Z =
[z1, z2, . . . , z10, 0m×40], where 0p×q is the p-by-q all zero
matrix. Each entry of an outlier zp ∈ R

m
+ (1 ≤ p ≤ 10) is

drawn uniformly at random in the interval [0, 1] (using
the rand function of MATLAB), and then, the zps are
scaled as follows:

zp ← KW
zp

‖zp‖2
1 ≤ p ≤ 10

where KW = (1/r)
∑r

k=1 ‖W (:, k)‖2 is the average of
the norm of the columns of W . If b = 0, no outliers nor
background pixels with zero spectral signatures are added
to M , i.e., Z is the empty matrix.

7) The jth column of the noise matrix N is generated as
follows: Each entry is generated following the normal
distribution N(i, j) ∼ N (0, 1) for all i (using the randn
function of MATLAB) and is then scaled as follows:

N(:, j) ← εKWuN(:, j)

where ε ≥ 0 is the parameter controlling the noise level
and u is drawn uniformly at random between 0 and 1
(hence, the columns are perturbed with different noise
levels, which is more realistic).

Finally, the negative entries of M = [WH,Z] +N are set to
zero (note that this can only reduce the noise).

Once an algorithm was run on a data set and once it has gen-
erated r clusters K′

k(1 ≤ k ≤ r), its performance is evaluated
using the following criterion:

Accuracy = max
P∈[1,2,...,r]

1

n

(
r∑

k=1

∣∣∣Kk ∩ K′
P (k)

∣∣∣
)

∈ [0, 1]

where [1, 2, . . . , r] is the set of permutations of {1, 2, . . . , r}
and Kk are the true clusters. Note that if a data point does not
belong to any cluster (such as an outlier), it does not affect the
accuracy. In other words, the accuracy can be equal to 1 even
in the presence of outliers (as long as all other data points are
properly clustered together).

C. Results

For each noise level ε and each value of s and b, we generate
25 synthetic HSIs as described in Section III-B. Fig. 3 reports
the average accuracy; hence, the higher the curve, the better.

We observe the following.
1) In almost all cases, the hierarchical clustering techniques

consistently outperform the plain clustering approaches.
2) Without scaling nor outliers (top left of Fig. 3), HKM

performs the best, while H2NMF is second best.
3) With scaling but without outliers (top right of Fig. 3),

H2NMF performs the best, slightly better than SPKM,
while HKM performs rather poorly. This shows that
HKM is sensitive to scaling (i.e., to different illumination
conditions in the image), which will be confirmed on the
real-world HSIs.

4) With outliers but without scaling (bottom left of Fig. 3),
H2NMF outperforms all other algorithms. In particular,
H2NMF has more than 95% average accuracy for all ε ≤
0.3. HSPKM behaves better than other algorithms but is
not able to perfectly cluster the pixels, even for very small
noise levels.

5) With scaling and outliers (bottom right of Fig. 3), HKM
performs even worse. H2NMF still outperforms all other
algorithms, while HSPKM extracts relatively good clus-
ters compared to the other approaches.

Table I gives the average computational time (in seconds)
of all algorithms for clustering a single synthetic data set.
We observe that SPKM is significantly faster than all other
algorithms, while HKM is slightly slower.
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Fig. 3. Performance of the different algorithms on synthetic data sets. From
top to bottom: (s, b) = (0, 0), (1, 0), (0, 1), and (1, 1).

D. Real-World HSIs

In this section, we show that H2NMF is able to perform
very good clustering of high-resolution real-world HSIs. This

TABLE I
AVERAGE RUNNING TIME IN SECONDS FOR THE DIFFERENT

ALGORITHMS ON THE SYNTHETIC DATA SETS

Fig. 4. Urban HSI set taken from an aircraft (Army Geospatial Center).

section will focus on illustrating three important contributions:
1) H2NMF performs better than standard clustering techniques
on real-world HSI; 2) although H2NMF has been designed
to deal with HSIs with pixels dominated mostly by one end-
member, it can provide meaningful and useful results in more
difficult settings; and 3) H2NMF can be used as an endmember
extraction algorithm in the presence of pure pixels (we compare
it to VCA [10] and the SPA [11]). Note that, because the ground
truth of these HSIs is not known precisely, it is difficult to
provide an objective quantitative measure for the cluster quality.

1) H2NMF as an Endmember Extraction Algorithm: Once
a set of clusters Kk(1 ≤ k ≤ r) has been identified by H2NMF
(or any other clustering technique), each cluster of pixels should
roughly correspond to a single material; hence, M(:,Kk)(1 ≤
k ≤ r) should be close to rank-one matrices. Therefore, as
explained in Section II-A, it makes sense to approximate these
matrices with their best rank-one approximation: For 1 ≤ k ≤ r

M(:,Kk) ≈ ukv
T
k , where uk ∈ R

m, vk ∈ R
n.

Note that, by the Perron–Frobenius and Eckart–Young theo-
rems, uk and vk(1 ≤ k ≤ r) can be taken nonnegative since
M is nonnegative. Finally, uk should be close (up to a scaling
factor) to the spectral signature of the endmember correspond-
ing to the kth cluster. To extract a (good) pure pixel, a simple
strategy is therefore to extract a pixel in each Kk whose spectral
signature is the closest, with respect to some measure, to uk. In
this paper, we use the mean-removed spectral angle (MRSA)
between uk and the pixels present in the corresponding cluster
(see, for example, [31]). Given two spectral signatures (x, y ∈
R

m), it is defined as

φ(x, y) =
1

π
arccos

(
(x− x̄)T (y − ȳ)

‖x− x̄‖2‖y − ȳ‖2

)
∈ [0, 1] (3)

where, for a vector z ∈ R
m, z̄ = (

∑m
i=1 zi)e and e is the vector

of all ones.
As we will see, this approach is rather effective for high-

resolution images and much more robust to noise and outliers
than VCA and SPA. This will be illustrated later in this section
(it is important to keep in mind that SPA and VCA require the
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Fig. 5. Clustering of the Urban HSI. From top to bottom: HKM, HSPKM, and H2NMF.

pure-pixel assumption, while H2NMF requires that most pixels
are dominated mostly by one endmember).

2) Urban HSI: The Urban HSI3 from the HYperspectral
Digital Imagery Collection Experiment (HYDICE) contains
162 clean spectral bands, and the data cube has a dimension
of 307× 307× 162. The Urban data set is a rather simple and
well-understood data set: It is mainly composed of six types of
materials (road, dirt, trees, roof, grass, and metal) as reported
in [32] (see Figs. 4 and 7). Fig. 5 displays the clusters obtained
with H2NMF, HKM, and HSPKM.4 We observe the following.

1) HKM performs very poorly. This is due to the illumi-
nation which is uneven among the pixels in the image
(which is very damaging for HKM as shown on the
synthetic data sets in Section III-B).

2) HSPKM properly extracts the trees and roof, but the grass
is extracted as three separate clusters, while the road,
metal, and dirt form a unique cluster.

3) H2NMF properly extracts the trees, roof, and dirt, while
the grass is extracted as two separate clusters, and the
metal and road form a unique cluster.

The reason why H2NMF separates the grass before separating
the road and metal is threefold: 1) The grass is the largest cluster
and actually contains two subclasses with slightly different
spectral signatures (as reported in [34]; see also Fig. 8); 2) the
metal is a very small cluster; and 3) the spectral signatures of
the road and metal are not so different (see Fig. 4). Therefore,
splitting the cluster containing the road and metal does not
reduce the error as much as splitting the cluster containing the
grass. It is important to note that our criterion used to choose the
cluster to split at each step favors larger clusters as the singular
values of a matrix tend to be larger when the matrix contains
more columns (see Section II-A). Although it works well in
many situations (particularly when clusters are relatively well
balanced), other criterions might be preferable in some cases;
this is a topic for further research.

3Available at http://www.agc.army.mil/.
4The clustering obtained with KM and SPKM can be found in [33]; the

clustering obtained with KM is rather poor, while the one obtained with SPKM
is similar to the one obtained with HSPKM.

Fig. 6 displays the first levels of the cluster hierarchy gener-
ated by H2NMF. We see that, if we were to split the cluster con-
taining the road and metal, they would be properly separated.
Therefore, we have also implemented an interactive version of
H2NMF (denoted I-H2NMF), where, at each step, the cluster
to split is visually selected.5 Hence, selecting the right clusters
to split (namely, splitting the road and metal, and not splitting
the grass into two clusters) allows us to identify all materials
separately (see Fig. 7; note that this is not possible with HKM
and HSPKM).

Using the strategy described in Section III-D1, we now
compare the different algorithms when they are used for end-
member extraction. Fig. 8 displays the spectral signatures of
the pixels extracted by the different algorithms. Letting w′

k(1 ≤
k ≤ r) be the spectral signatures extracted by an algorithm,
we match them with the "true" spectral signatures wk(1 ≤ k ≤
r) obtained using the N-FINDR5 algorithm [35] plus manual
adjustment [32] so that

∑r
k=1 φ(wk, w

′
k) is minimized [see

(3)]. Table II reports the MRSA, along with the running time
of all methods. Although the hierarchical clustering methods
are computationally more expensive, they perform much better
than both VCA and SPA.

E. Additional Experiments on Real-World HSIs

In this section, our goal is not to compare the different
clustering strategies (due to the space limitation) but rather to
show that H2NMF can give good results for other real-world
and widely used data sets.

1) San Diego Airport HSI: The San Diego airport is a HY-
DICE HSI containing 158 clean bands and 400 × 400 pixels for
each spectral image (i.e., M ∈ R

158×160000
+ ). There are mainly

four types of materials: road surfaces, roof, trees, and grass
(see, for example, [36]). There are three types of road surfaces,
including boarding and landing zones, parking lots, and streets,
and two types of roof tops.6 H2NMF took 33.6 s, and Fig. 9

5This is also available at https://sites.google.com/site/nicolasgillis/. The user
can interactively choose which cluster to split, when to stop the recursion, and,
if necessary, which clusters to fuse.

6Note that, in [36], only one type of roof top is identified.



2076 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 4, APRIL 2015

Fig. 6. Hierarchical structure of H2NMF for the Urban HSI.

Fig. 7. Interactive H2NMF (I-H2NMF) of the Urban HSI (see also Fig. 6).
From left to right: grass, trees, roof, dirt, road, and metal.

displays the first levels of the cluster hierarchy of H2NMF.
It is interesting to notice that roads 2 and 3 can be further
split up into two meaningful subclasses. Moreover, another new
material is identified (unknown to us prior to this study); it is
some kind of roofing material/dirt (note that HKM and HSPKM
are not able to identify this material). More computational
results with comparison with HKM, HSPKM, SPA, and VCA
can be found in the arXiv version [37] of this paper.

2) Terrain HSI: The Terrain HSI is available from http://
www.agc.army.mil/Missions/Hypercube.aspx. It is constituted
of 166 cleans bands, each having 500 × 307 pixels, and is
composed of about 5 different materials: road, tree, bare soil,
and thin and tick grass (see, for example, http://www.way2c.
com/rs2.php). H2NMF took 20.3 s to perform the clustering
shown in Fig. 10. H2NMF is able to identify the five clusters
extremely well, while HKM and HSPKM are not able to
separate bare soil and thick and thin grass properly.

3) Cuprite HIS: Cuprite is a mining area in southern Nevada
with mostly mineral and very little vegetation, located approx-
imately 200 km northwest of Las Vegas (see, for example,
[10] and [31] for more information and http://speclab.cr.usgs.
gov/PAPERS.imspec.evol/aviris.evolution.html). It consists of
188 images, each having 250 × 191 pixels, and is composed
of about 20 different minerals. The Cuprite HSI is rather noisy,
and many pixels are a mixture of several endmembers. Hence,
this experiment illustrates the usefulness of H2NMF to analyze
more difficult data sets, where the assumption that most pixels
are dominated mostly by one endmember is only roughly
satisfied (see Fig. 11). We run H2NMF with r = 15, which
took 11.6 s.

Fig. 8. Spectral signatures extracted for the Urban HSI.

TABLE II
RUNNING TIMES AND MRSA (IN PERCENT) FOR THE URBAN HSI
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Fig. 9. Hierarchical structure of H2NMF for the San Diego airport HSI.

Fig. 10. Five clusters obtained automatically with H2NMF on the Terrain
HSI. From left to right: tree, road, thick grass, bare soil, and thin grass.

Fig. 11. Fifteen clusters obtained automatically with H2NMF on the Cuprite
HSI. Some materials can be distinguished, e.g., (1) alunite, (2) montmorillonite,
(3) goethite, (5) hematite, (8)–(12) desert varnish, (11) iron oxydes, and
(15) kaolinite (counting from left to right and top to bottom).

IV. CONCLUSION AND FURTHER WORK

In this paper, we have introduced a way to perform hierar-
chical clustering of high-resolution HSIs using the geometry
of such images and the properties of rank-two NMF [see

Algorithm 1 (referred to as H2NMF)]. We have showed that
the proposed method outperforms k-means, spherical k-means,
and standard NMF on several synthetic and real-world data sets,
being more robust to noise and outliers while being computa-
tionally very efficient, requiring O(mnr) operations (m is the
number of spectral bands, n is the number of pixels, and r is
the number of clusters). Although high-resolution HSIs usually
have low noise levels, one of the reasons H2NMF performs well
is that it can handle better background pixels and outliers. There
might also be some materials present in very small proportion
that are usually modeled as noise [1] (hence, robustness to
noise is a desirable property even for high-resolution HSIs).
Moreover, we have also showed how to use H2NMF to identify
pure pixels, which outperforms standard endmember extraction
algorithms such as VCA and SPA.

It would be particularly interesting to use other priors of
HSIs to perform the clustering. In particular, using the spatial
information (i.e., the fact that neighboring pixels are more likely
to contain the same materials) could certainly improve the
clustering accuracy. Also, the same technique could be applied
to other kinds of data (e.g., in medical imaging or document
classification).
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